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Outline of presentation

The questions

 What are we trying to answer?

 Why is this important?

e How did we try to answer the question?
 What did we find out?

 What are the implications of our findings?
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What are we trying to answer?

The research question

 What are the characteristics of flames near-to and during their low fuel-
air ratio (lean) limit?

Luminous non-premixed flame Blue lean premixed flame

* Incomplete burning of fuel  More complete burning of fuel
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Why Is this important?

Factors driving lean-burn technology

Sooty non-premixed flame

‘bad’

Blue lean premixed flame

‘good’
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http://www.zmescience.com/ecology/environ
mental-issues/fighting-against-soot-more-
important-than-ever/

http://villageofjoy.com/33-cool-and-creative-
ads-part-i/

http://www.disputeabout.eu/clanek/26359

Carbon Tax

http://www.reportage-enviro.com/2010/09/carbon-
taxes-support-from-ets/




How did we try to answer the question? (1/3)

Background and approach

 Factors known to affect flame behaviour and extinction:

e Mixture chemistry
 Fluid mechanics

e Heat loss

» What do we need to observe and measure?

 Where (global vs. local)?
« Air-fuel composition
* Velocity

* Flame shape (location, structure)
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How did we try to answer the question? (2/3)

Experimental techniques

* Flame photographs

 Measurements of reactive species - OH radical

* Chemiluminescence: light emission from chemical reactions

e Good for global flame shape
» Accuracy limited by spatial smearing
* Fluorescence: light emission induced by electromagnetic radiation

e Control over spatial region illuminated by the laser

* Increased spatial detail and sharpness of edges

* Flow and velocity measurements: laser illumination of tracer particles

* Mie Scattering, Particle Image Velocimetry
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How did we try to answer the question? (3/3)
Experimental set-up

Photograph of the experimental facility.
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What did we find out? (1/7)

Flame shape — unconfined flame

* Flame shape changes as lean blow-off condltlon IS approached
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front at conditions far-from and close-to blow-off.
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What did we find out? (2/7)

Flame shape — confined swirling flame

 Change in flame shape is dependent on the burner geometry and flow

conditions.
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Time average OH* chemiluminescence images (after Abel
transform) approaching blow-off (left to right)
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What did we find out? (3/7)

Flame shape — adjacent confined swirling flames

Arrows indicate

* Flame shape is more complicated for more practical burners
direction of swirl
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What did we find out? (4/7)

Flame structure during blow-off — unconfined flame

» Blow-off is a gradual process

t=to-90ms t=to-50ms t=to-30ms {=to-90ms {=to-50ms 1=to-30ms

t=to-20ms t=to-20ms t=to-14ms

t=to-0.4ms t=to-0.4ms

Sequences of simultaneous instantaneous OH* Sequences of instantaneous OH-PLIF
chemiluminescence (red) and Mie scattering (gray)
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What did we find out? (5/7)

The blow-off mechanism

40.0

* Near blow-off, fragmentation begins at the downstream parts of the flame
« where the weaker burning flame interacts with large velocity fluctuations
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Images of uR,\éS/Ub with contours of the flame brush
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as blow-off is approached (left to right).

« Colder unburned gases then penetrate inside and cool the hot recirculating
gas region critical for flame stabilisation.
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What did we find out? (6/7)

Flame structure during blow-off — multiple flames

« Flame shape during blow-off is dependent on the burner and flow pattern.

Normalized OH”

=f0—49 Orns

>

t=to-19.4ms t=to—4ms

(a) Time series of the area integrated OH* signal during blow-off, and sequences of OH* images during the
(b) intermediate and (c) final stages of the blow-off transient for two adjacent flames with counter-swirl.
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What did we find out? (7/7)

Average duration of the blow-off event

e The blow-off event lasts an average time (t.,) of the order of tens to hundreds of

milliseconds.
 unconfined
O confined
O confined, swirl
200.0F = 2fame 4
P 2 flame, co swirl
<4 2 flame, counter swirl
e 4
@ 150.0 a
)
% * p
—
—— a 4
< 100.0 >
(&
I
50.0 *
d — flame holder diameter * 3 o >
Ugo — bulk mixture *
velocity at blow-off 0.0 ,
Burner type
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What are the implications of our findings?

The main conclusions

* New information provided on the flame behaviour both near-to and
during the low fuel-air ratio extinction limit.

« for both simple and more practical burner geometries
« Qualitative and quantitative information available for:

« flame shape, structure, flow-field, duration of extinction transient
« Data is useful for:

e further research on flame stabilisation and extinction

 validation of computational models
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