

Stabilisation and blow-off of turbulent flames

J. Kariuki, D. Cavaliere, Dr. J. Dawson, Prof. E. Mastorakos

Thanks to the funding bodies, the EPSRC and the Rolls-Royce Group.

Outline of presentation

The questions

- What are we trying to answer?
- Why is this important?
- How did we try to answer the question?
- What did we find out?
- What are the implications of our findings?

What are we trying to answer? The research question

• What are the characteristics of flames near-to and during their low fuelair ratio (lean) limit?

• Incomplete burning of fuel

Blue lean premixed flame

More complete burning of fuel

Why is this important?

Factors driving lean-burn technology

Sooty non-premixed flame 'bad'

http://www.zmescience.com/ecology/environ mental-issues/fighting-against-soot-moreimportant-than-ever/

Blue lean premixed flame 'good'

http://villageofjoy.com/33-cool-and-creativeads-part-i/

http://www.reportage-enviro.com/2010/09/carbontaxes-support-from-ets/

How did we try to answer the question? (1/3) Background and approach

- Factors known to affect flame behaviour and extinction:
 - Mixture chemistry
 - Fluid mechanics
 - Heat loss
- What do we need to observe and measure?
- Where (global vs. local)?
 - Air-fuel composition
 - Velocity
 - Flame shape (location, structure)

How did we try to answer the question? (2/3) Experimental techniques

- Flame photographs
- Measurements of reactive species OH radical
 - Chemiluminescence: light emission from chemical reactions
 - Good for global flame shape
 - Accuracy limited by spatial smearing
 - Fluorescence: light emission induced by electromagnetic radiation
 - Control over spatial region illuminated by the laser
 - Increased spatial detail and sharpness of edges
- Flow and velocity measurements: laser illumination of tracer particles
 - Mie Scattering, Particle Image Velocimetry

How did we try to answer the question? (3/3) Experimental set-up

Photograph of the experimental facility.

What did we find out? (1/7)

Flame shape – unconfined flame

• Flame shape changes as lean blow-off condition is approached

Time average OH* chemiluminescence images (after Abel transform) approaching blow-off (left to right)

Instantaneous OH-PLIF images with the local flame front superimposed.

Arbitrary chosen instantaneous contours of the flame front at conditions far-from and close-to blow-off.

20.0

What did we find out? (2/7)

Flame shape – confined swirling flame

- Change in flame shape is dependent on the burner geometry and flow conditions.
- Circular enclosure (70 mm diameter, 135 mm height)
- Weaker swirl

- Square enclosure (95 mm width, 145 mm height)
- Stronger swirl

What did we find out? (3/7)

Flame shape – adjacent confined swirling flames

• Flame shape is more complicated for more practical burners

What did we find out? (4/7)

Flame structure during blow-off – unconfined flame

Blow-off is a gradual process

t=to-50ms

t=to-14ms

t=to-20ms

t=to-8ms

t=to-4ms

t=to-30ms

t=to-10ms

Sequences of simultaneous instantaneous OH* chemiluminescence (red) and Mie scattering (gray)

What did we find out? (5/7) The blow-off mechanism

- Near blow-off, fragmentation begins at the downstream parts of the flame
- where the weaker burning flame interacts with large velocity fluctuations

 Colder unburned gases then penetrate inside and cool the hot recirculating gas region critical for flame stabilisation.

What did we find out? (6/7)

Flame structure during blow-off – multiple flames

• Flame shape during blow-off is dependent on the burner and flow pattern.

(a) Time series of the area integrated OH* signal during blow-off, and sequences of OH* images during the (b) intermediate and (c) final stages of the blow-off transient for two adjacent flames with counter-swirl.

What did we find out? (7/7)

Average duration of the blow-off event

• The blow-off event lasts an average time (τ_{ext}) of the order of tens to hundreds of milliseconds.

What are the implications of our findings? The main conclusions

- New information provided on the flame behaviour both near-to and during the low fuel-air ratio extinction limit.
 - for both simple and more practical burner geometries
- Qualitative and quantitative information available for:
 - flame shape, structure, flow-field, duration of extinction transient
- Data is useful for:
 - further research on flame stabilisation and extinction
 - validation of computational models

