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Motivations and outline

Motivations:

e spray combustion employed in wide range of industrial devices (gas
turbines, diesel engines, furnaces);

e CFD powerful and reliable tool to assist the design process of
state-of-the-art combustion chambers;

e spray effects often neglected (partially/totally) in most combustion
models = assessment of their importance needed!
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Conditional Moment Closure (CMC)

Idea: key quantity exists that controls combustion process:
e non premixed flows: mixture fraction, &;

e premixed flows: progress variable, c.

True or not? Experiments suggest it is true.

e CMC solves for the conditional moments;

e scatter around conditional moments small:

e (w|n) can be closed at first order;
o Yo = [y (Yaln) P(n)dn
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The CMC equation for two-phase flows

Species transport equation [1]:

0Qq 0Qq 9% Qq . -
W+<Uj|"7>a—)g=</v|77> a2 +(w|n) +e+S (1)

where:
* (uj|n): conditional mean velocity;

e (N|n) = D< gf gf 77>: conditional scalar dissipation rate;

e (w|n): chemical source term;
— 1 9 (=p
® ef = TSR 9% (PP(n)<”}/Y£

Y droplets source term.

n>): conditional turbulent flux;

[1] M. Mortensen, R.W. Bilger, Combustion and Flame, 156:62-72, 2009
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Source terms due to droplets evaporation

S describes droplets influence on the gas phase and is given by:

1 0= mp P (v n)]
py () P(n) I
+] Q- =)

0Q. 1 (N|n)
o ] o) @)

In the above equation:

® (: mass fraction of species « in liquid phase;
e (M|n): conditional evaporation rate.
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Modelling of droplets source terms

Modelling principles:

e Evaporation occurs at saturation mixture fraction & only;
e Consistency condition fol (N|n) P(n)dn = T has to be satisfied.

Proposed model:

(Nfn) =

_~ 1 5
PP(U) 14 i=1

(M"Y n) difficult to model, and neglected for the moment being.
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Mixture fraction PDF and conditional scalar dissipation rate

PDF shape presumed — (-function employed.
Solution of two auxiliary equations required, modelled as in [2] :

0 o ~
ﬁ + o ( ,é) (pDTafj> + M1 (4)
OpEr , Kl o¢r 0~
TR ( 152) o (th o ) G 2pDN

+25 (N —€N) +p (&N -¢n)  (5)
AMC model [3] used for conditional scalar dissipation rate

[2] F.X. Demoulin, R. Borghi, Combustion and Flame, 129:281-293, 2002
[3] E. E. OBrien, T. Jiang, Physics of Fluid A, 3:3121-3123, 1991
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Chemistry, turbulent transport and conditional velocities

First-order closure of (w|n) employed:
<w|77> :U)(Qa,,QT) (6)

Conditional turbulent fluxes closed according to gradient model:

0Qq
e = —DTa—Qt (7)

Linear model used for conditional velocities:
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The Sandia bomb setup

Spark Plug

Mixing CreSSLl,re e Operating pressure: 42.5bar
\ , / osse e Air temperature: 1000 K
U\L]-lslctor e Fuel temperature: 374K

e Fuel type: n-heptane

: \ e Injector diameter: 100 pym
o R
Y Combustion (]

Injection pressure: 150 MPa
Chamber

e O, content: 10 to 21 %
Sapphire Window Retainer

Window

Figure 1: Experimental setup
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Flame lift-off height and ignition delay time
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Figure 2: Lift-off height versus time
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Unconditional averages - 15 % O, case
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Autoignition occurs along axis;

B O A flame propagates along &g,
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Figure 4: §~ 55 T, You vs. time




Conditional temperature evolution - 15% O, case
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ignition delay time increases when S # 0;
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S =0 case, ignition spot source terms in CMC equations;
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Anchoring mechanism

— Axlal convecnon
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e spatial diffusion terms less important CMC source terms along axis

than in lifted jet flames; * R
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Conclusions and future work

Conclusions:
e influence of droplets terms on numerical predictions weak;
e 7,4 overpredicted for all conditions investigated,;

e |ift-off height reproduced with good accuracy.
Future work:

o more accurate modeling of P(n) and ( N|7) needed!
e modeling of ( Y2/M"|7n) to be investigated;

e assessment of droplet effects against wider range of conditions.
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