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Thermoacoustic Instabilities

The instability is due to high amplitude pressure oscillations. Such
oscillations can lead to violent vibrations within the system, with the risk
of a complete failure.



Nonlinear Analysis

Linear flame models are not able to predict triggering instabilities and
limit cycle amplitudes =⇒ Nonlinearities are introduced inside heat
release rate

Supercritical Bifurcation Subcritical Bifurcation



Motivation & Objective

=⇒ Bifurcation diagrams can be obtained through:

• Sistematic variation of parameters and tracking direct time
integration. This method is computationally expensive;

• Numerical continuation. An unstable limit cycle can be computed,
it is very efficient in obtaining the dependance of the solution from
the control parameter. It takes a long time to map the bifurcation
diagram.

• DDE-BIFTOOL is a sofware based on the numerical continuation
methods for delay systems.

=⇒ It could be easy for acoustic network models such as LOTAN to
map the bifurcation diagram as a function of one control parameter.



LOTAN’s approach

• LOTAN is an Acoustic Network model which uses the linear theory
for predicting the combustion oscillations in LPP combustors.

• Introducing nonlinear flame models, it is possible to predict the
limit cycle amplitudes both in the frequency and in the time
domain.

• Linear Flame Model =⇒ Q ′

Q
= −k m′

m

• Nonlinear Flame Transfer Function =⇒ TM(ω,A) = Q̂(1)
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Configuration

• Rijke Tube;

• Flame located at one quarter of the tube;

• Temperature increases from 300 K to 700 K across the flame;

• Time delay is constant (now it is not important the amplitude
dependance of the time delay);

• Open-end inlet and outlet boundary conditions, p′ = 0.



Flame Model 1
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=⇒ Ref.: N. Ananthkrishnan, K. Sudhakar, S. Sudershan and A. Agarwal, Application of Secondary Bifurcations to

Large-Amplitude Limit Cycles in Mechanical Systems, Journal of Sound and Vibration, (1998) 215 (1), 183-188.



Flame Model 2
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=⇒ Ref.: N. Ananthkrishnan, K. Sudhakar, S. Sudershan and A. Agarwal, Application of Secondary Bifurcations to

Large-Amplitude Limit Cycles in Mechanical Systems, Journal of Sound and Vibration, (1998) 215 (1), 183-188.



Flame Model 3
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=⇒ Ref.: N. Ananthkrishnan, K. Sudhakar, S. Sudershan and A. Agarwal, Application of Secondary Bifurcations to

Large-Amplitude Limit Cycles in Mechanical Systems, Journal of Sound and Vibration, (1998) 215 (1), 183-188.



Flame Model 4
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Q ′(t) =

{
Q ′(t) for | Q ′(t) |≤ αQ
αQsign(Q ′(t)) for | Q ′(t) |> αQ

C = 2 C1 = 0.5

=⇒ Ref.: N. Ananthkrishnan, S. Deo and F.E.C. Culick, Reduced-Order Modeling and Dynamics of Nonlinear Acoustic

Waves in a Combustion Chamber, Combustion Science and Technology, 177, 1-27,2005.



Flame Model 5
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=⇒ Ref.: M. Juniper, Triggering in the Horizontal Rijke Tube: Non-normality, transient growth and bypass transition, J.

Fluid Mech. (2011), vol. 667, pp. 272-308.



Comments

• Flame Transfer Function increases from the value at zero amplitude
=⇒ Subcritical Bifurcation;

• Flame Transfer Function decreases from the value at zero
amplitude =⇒ Supercritical Bifurcation;

• Flame Model: positive third derivative around zero =⇒ Subcritical
Bifurcation;

• Flame Model: negative third derivative around zero =⇒
Supercritical Bifurcation;

• A linear damping coefficient is necessary in order to get the Hopf
bifurcation point;

• Saturation permits to have a stable periodic solution, avoiding very
large oscillations.



Conclusions

• LOTAN has shown a very good behaviour in mapping the
bifurcation diagrams;

• It is very simple to use;

• It does not take a lot of time for the analysis of the system in the
frequency domain;

• The results are in a very good agreement with the ones from the
literature, which have been obtained through ad hoc codes.


