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Introduction

. Steam condenses into
fog of droplets in LLP
turbine

. High losses 1n
nucleating stage

Enthalp |

. Droplet size information | LT O
required to predict loss \

Y 7 Measurements
Entropy taken by P.T. Walters




Broad .

Droplet Size Distributions

® Turbine Measurement
® Nozzle Calculation
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Hypothesis

Caused by unsteady wake—chopping

effects



Previous Work

stator 1 rotor stator

Gyarmathy & Spengler
1974

Total temperature fluctuations
observed in exit flows

Bakhtar & Heaton 1988

Estimation of effect on droplet sizes by
statistical model

Guha & Young 1994

Refined the statistical model using
[Lagrangian style nucleation and droplet
growth calculations

Petr & Kolovratnik 2000

Compared statistical calculations to
measurements for a 200 MW LP
turbine




Numerical Scheme
TBLOCK by John Denton

- Dedicated turbomachinery gas flow solver

Steady and unsteady calculations

— Dual time stepping
— Viscous effects using body force model

— Turbulence using mixing length model

Steam properties included in lookup tables

_ Based on Virial Equation of state truncated at 2rd
term

— Accurate up to b bar

Poly—dispersed droplets treated by
moments



Validation: Unsteady Nozzle
Calculations

. Supercritical heat addition from
condensation causes unsteadiness

. Asymmetric mode possible in nozzles with
low expansion rates

. Observed in moist air experiments

. True time step must be less than ~1 yus



Validation: Uns

‘eady Nozzle

Calcula
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Q3D Calculation for a Two Stage
LLP Turbine

. Final stages based on model turbine
geometry

. Perfect gas calculation used to create Q3D
geometry at mid span

. Compare steady and unsteady calculations

. Steady calculation averages the variables 1n
a plane between the rows



Q3D Results: Wakes

Entropy Contours for a gas calculation

Contours of
exp(-As/R)
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QR3D: Droplet Sizes
Nucleation in Final Row
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3D Two Stage Turbine:
Nucleation
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3D: Droplet Sizes at + Span

Size contours for unsteady calculatlon
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Summary / Conclusions

Unsteady wake segmentation clearly has a
significant impact on the droplet spectra

2—stage Q3D calculations indicate a strong
dependence on inlet superheat

Full turbine calculations, however, might
not show the same sensitivity due to
unsteadiness generated by upstream blade
rows

3D unsteady calculations for a 5 stage
machine are now within easy reach
(anticipated run time: ~8 hrs on 25-core
cluster)






3D Contour Plots
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