1. Prologue

Combustion Properties of Alternative Liquid Fuels

21 JULY 2011

Cheng Tung Chong, Simone Hochgreb

Content

- 1. Introduction
- 2. What's biodiesels
- 3. Burner design and experimental
- 4. Results
 - Flame structure
 - Spectroscopy
 - Spray droplets
 - Flow field
 - Emissions
- 5. Conclusion and summary

Transesterification process - Vegetable oil+methanol \rightarrow Methyl esters+glycerol Biodiesels are mixtures of methyl esters (ME). ME are long-chain esters.

	(carbon:	Composition (%)			
Fatty acids	bond)	Rapeseed	Soybean	Jatropha	Palm
Lauric	(C12:0)	-	0.1	-	0.2
Myristic	(C14:0)	1.0	0.1	0.1	0.8
Palmitic	(C16:0)	3.5	10.2	15.6	39.5
Stearic	(C18:0)	0.9	3.7	10.5	5.1
Oleic	(C18:1)	64.1	22.8	42.1	43.1
Linoleic	(C18:2)	22.5	53.7	30.9	10.4
Linolenic	(C18:3)	8.0	8.6	0.2	0.1
Others		-	0.8	0.6	0.8

Fuel properties

Properties	Jet-A1	Diesel	PME	RME
Approx. formula	$\mathrm{C}_{11}\mathrm{H}_{21}$	$\mathrm{C_{16}H_{34}}$	$\mathrm{C_{19}H_{36}O_2}$	$\mathrm{C_{19}H_{36}O_{2}}$
$\rm H/C \ ratio*$	1.98	1.9	1.89	1.89
C/O ratio*	-	-	9.83	10.06
Boiling range (°C)	166-266	190-360	> 215	> 200
Spec. grav. 15°C	0.81	0.85	0.88	0.88
Pour point (°C)	-	-20	-18	-10
Flash point (°C)	38	60-72	174	170
Viscosity (cSt) 40°C	-	2.6	4.5	4.83
m LHV~(kJ/kg)	43150	43090	36770	36800
Cetane number	-	52	62.6	51

- Yes, the FUEL properties are different, so HOW do we test the fundamental combustion properties?
- What kind of experiment and under what conditions?

Objectives - Investigation of the combustion properties of biodiesels under a gas turbine type combustor

- Develop a methodology to test alternative fuels

WHY gas turbine-type combustor??

Swirling spray flame

- Potential to be used in Gas turbines
- Spray flame present in many applications
- Obtain an experimental database for modelling

Schematic of the single swirl flame burner

Man in love with his burner

Swirling spray flame

Operating conditions

Fuel	φ	AFR	Air (g/s)	$\begin{array}{c} {\rm Fuel} \\ {\rm (g/s)} \end{array}$	Power (kW)
Diesel	0.47	31.80	4.43	0.14	6.0
Jet-A1	0.47	31.42	4.37	0.14	6.0
PME	0.47	26.75	4.37	0.16	6.0
RME	0.47	26.75	4.36	0.16	6.0

Can you guess what fuel is used?

Flame imaging

Diesel

Jet-A1

PME

RME

PDA setup for reacting flow

PDA setup and measurement locations

Table 3: PDA optical setting		
Transmitting optics		
Wavelength	514.5 nm	
Power	0.8 W	
Beam spacing	45 mm	
Beam width	2.2 mm	
Focal Length	500 mm	
Number of fringes	26	
Width of measurement vol.	0.149 mm	
Length of measurement vol.	3.312 mm	
Receiving Optics		
Focal length	310 mm	
Scattering angle	56°	

PDA Setup for Reacting Flow

Setup for PDA measurements

Emission measurement

- Measure the emission across the burner outlet.
- Average the spatial values.
- NO, NO₂, CO, O₂ and CO₂ are measured

Emissions under the same power output condition

5. Summary and conclusion

- Combustion properties of alternative fuel can be significantly different.
- A methodology is developed to systematically measure the combustion properties of alternative fuels.
- Advanced modelling of fuel and combustion requires experimental data.

Thank you!

MOSTI-MIGHT Rolls Royce UTM Cambridge University Carotino Sdn. Bhd. (PME) ADM International Sarl, Switzerland (RME)