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What is CLC?
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What are the advantages?

• No sorbent required

• No ASU required

• High fuel conversions (≈ 100 %) achievable

• Applicable for range of fuel types• Applicable for range of fuel types



A typical CLC plant
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Flowsheeting of a CLC Process with 
H Production and Power GenerationH2 Production and Power Generation



Process Flowsheet



Solving of Flowsheet

• Modelled in MATLAB
– Thermodynamic data from NASA-Glenn database

– Reactions solved by Gibbs Energy minimisation

• Two key system variables• Two key system variables
– Iron oxide circulation rate nFe

– Steam flowrate into OX1 nst



nFe = 240 mol/s

nst = 50 mol/s

Heat Integration

nFe = 240 mol/s

nst = 150 mol/s

nFe = 390 mol/s

nst = 150 mol/s



0 = Unsuitable 

1 = Suitable, 
external heat 
required

2 = Suitable, 
fully heat-

Suitable Operating Regime

n
fully heat-
integrated

nst

nFe

Operating Criteria
• H2 stream ≥ 95% pure.
• Conversion of fuel to CO2
and H2O ≥ 95%.
• CO in the produced H2
stream < 50 ppm.
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Enhancing oxygen carrier performance 
with Al2O3 supportwith Al2O3 support
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Fe-Al-O phase diagram
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Effect of Fe-Al-O phase equilibrium 
on H2 production

0.4

0.5

0.6

 (
M

e
a

su
re

d/
T

he
or

e
tic

a
l)

2

5

(Numbers denote 
cycle order)

90 wt % Fe2O3, 
10 wt % Al2O3

0

0.1

0.2

0.3

0.5 0.7 0.9 1.1 1.3 1.5 1.7

CO2/CO

Y
ie

ld
 o

f H
2 

(M
e

a
su

re
d/

T
he

or
e

tic
a

l)

3

4

5

6

1

Direction of decreasing pO2



Oxygen carrier particle after cycling

Fe-rich layer

Al-rich layer

75 wt% Fe2O3, 25 wt% Al2O3 after 20 cycles, 
sectioned

EDXS map

(red = Fe

yellow = Al)



Conclusions

• CLC has high potential for highly efficient 
CO2 capture with both power generation and 
H2 production

• Can be optimised towards producing electrical • Can be optimised towards producing electrical 
power/H2

• Oxygen carrier support material (such as 
Al2O3) essential for long-term performance
– Interaction between reactive and support material 

must be fully understood.
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Thank you
Any questions?Any questions?



Phase diagram
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Hydrogen Production

Units denote 
mol H /s/kg n mol H2 /s/kg 
fuel

nst

nFe


