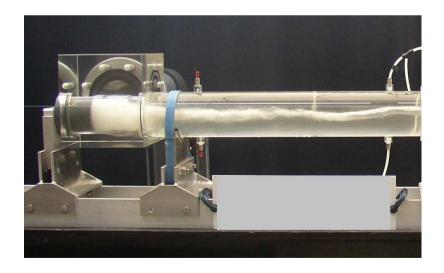
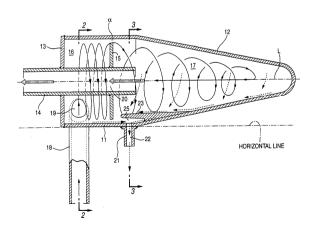
A Massively Parallel Incompressible Smoothed Particle Hydrodynamics Simulator for Oilfield Applications

Paul Dickenson^{1,2}, William N Dawes¹

¹CFD Laboratory, Cambridge University Engineering Dept, Trumpington St, Cambridge, UK, CB2 1PZ


²Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge, UK, CB3 0EL



Introduction

- Multiphase flows are important to oil and gas industry
- Multiphase CFD can improve our understanding
- Multiphase CFD remains underdeveloped
- Smoothed Particle Hydrodynamics is good fit to many oilfield problems but significant scope for development
- Rotating gas-liquid flows of particular industrial importance

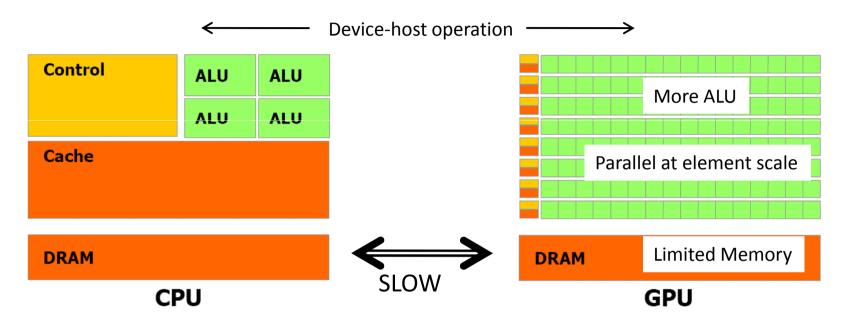
Smoothed Particle Hydrodynamics

- Fully Lagrangian meshless particle method
- Fluid properties distributed over points with kernel functions
- Topology changes and free surfaces
- Small volume of dominant fluid
- Particles can have history eg shear history
- Expensive for simple problems, compares well for complex
- Immature method restricted by computational cost
- Weakly Compressible and Incompressible Formulations

$$P = B\left[\left(\frac{\rho}{\rho_0}\right)^{\gamma} - 1\right]$$

$$\nabla^2 p^{n+1} = \frac{\rho}{\Delta t} \nabla . \underline{u}^*$$

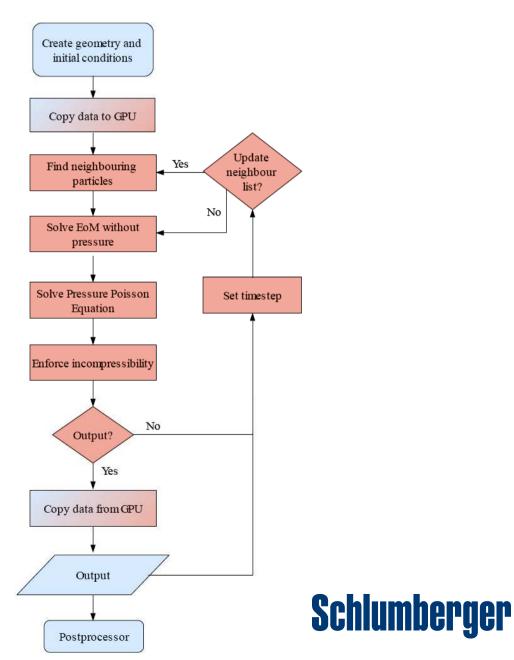
Resource Estimation


- Consider typical Rotating Flow Test Case
- Diameter 0.1m, length 1m
- 5mm resolution \rightarrow 1-3 hours on single CPU
- 1mm resolution \rightarrow 3-29 days on single CPU
- Parallel computing required
-and using incompressible formulation

Dickenson, P; 2009; "The Feasibility of Smoothed Particle Hydrodynamics for Multiphase Oilfield Systems"; *Seventh International Conference on CFD in the Minerals and Process Industries*; Melbourne 2009

Massively Parallel Computing: GPU

- Good match to SPH EoM calculation
 - Simple data structures
 - High ratio of computation to memory
- Massively Parallel WCSPH exists \rightarrow up to 50x speedup
- ISPH challenges → set up and solve PPE matrix problem



SPHIG Code Structure

- All significant computation on GPU
- Minimal data transfers

UNIVERSITY OF CAMBRIDGE

Solving the PPE

- Pressure Poisson Equation
- Reduces to a matrix problem
- Matrix A is large but very sparse
- Need to solve on GPU → minimise data transfers
- Sparse matrix storage → **minimise memory use**
- BiCGSTAB Sparse matrix linear solver for GPU
 - Speed IT from vratis.com
- Input matrix in Compressed Sparse Row format

$$\nabla^2 p^{n+1} = \frac{\rho}{\Delta t} \nabla \underline{u} * \qquad \underline{A} \underline{x} =$$

h

PPE Set-up (1)

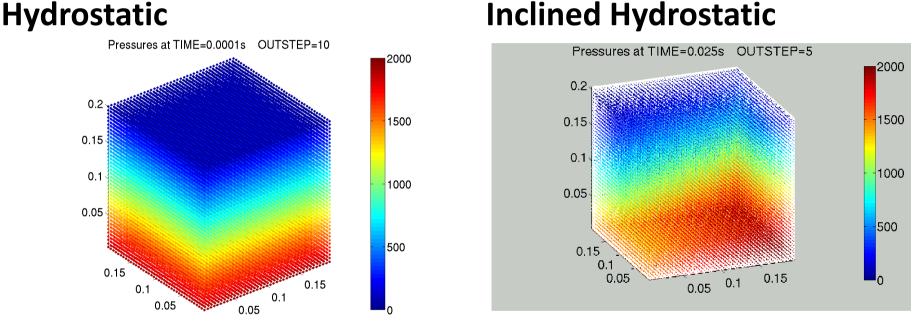
- Must generate matrix on GPU \rightarrow minimise data transfers
- Generating matrix in CSR format is inherently serial

1.0	1.4	0.0	3.0
0.0	1.0	0.0	0.0
0.0	0.0	1.0	5.2
7.1	0.0	0.0	1.0

• Write entirely new solver or **create compatible parallel format**

PPE Set-up (2)

New pCSR format developed for massively parallel matrix generation


1.01.40.03.00.01.00.00.00.00.01.05.27.10.00.01.0

- Fixed number of elements included per row
- Padded with existing zeros so back-compatible with CSR solvers
- Patent App GB1105576.1
- SPHIG: one thread per row

Results

Hydrostatic

- Correct pressure distributions obtained within 3 time steps
- Initial oscillation while particles move off grid
- Much shorter duration than acoustic waves seen in WCSPH
- Penetration of wall boundaries

Other Issues.....

- Neighbour Searching
 - Massively parallel implementation
- Free surface boundary condition
 - Detect by kernel truncation
 - Set pressure to zero
- Wall boundary condition
 - Liquid particles fixed in space
 - Impose normal pressure gradient condition
 - Changes in progress.....

Conclusion

- All ISPH components implemented for GPU computing
- Pressure Poisson Equation generated and solved on the GPU
- Maximum number of particles limited by significant GPU memory required to store the PPE matrix
- Boundary conditions are challenging
- Massively parallel ISPH is achievable but more work is required before complex problems can be simulated

Acknowledgements

- Jointly funded by EPSRC and Schlumberger Cambridge Research
- Thanks to Bill Dawes, PhD Supervisor
- Thanks also to Wei Jian, Chris Lenn, Gary Oddie, Richard Mills, Mike Ford, Paul Cleary

