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» But why are they of interest?

» Because they do serious damage

» Because they affect a wide range of equipment

» Industrial shift towards lean-burn, low-NOx combustion
systems

» dramatically increase susceptibility to instability
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Annular Combustor

» Two thin axisymmetric flame T
surfaces, evolving kinematically =~ A" Felflor ——=

o . / Flame Surface
» Compressibility and vorticity are |
3

ignored i~
& B A » Flame surfaces can pinch off and ¢, injectors

multiple areas of combustion are
possible

» Fluctuation of flame speed:
Su = f(¢)

» Heat release is proportional to the
flame area:

oe\?

att) =2rpun [ [ suoramton 1+ (5 ) ar

/ Su(®)AH(B)ry |1 + <8<) dr]




G-Equation Flame Model - Results

» 160Hz, 30% forcing. Equivalence ratio fluctuations
dominate flame surface wrinkling

Results

(Loading Flamemovie)




Flame_movie_160hz_Tsvary_03V.mpg
Media File (video/mpeg)
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» Geometry is represented as a network of modules

v

Multiple paths, cooling flows

Area increases/decreases

v

v

Requires a model of combustion
Q/Q=F(w)é/o

The flame transfer function can come:

v

» From experiment
» From CFD
» Simple descriptions (time-lag) with saturation

» From low-order flame models
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Acoustic Coupling - Frequency Domain
» Plotting error at downstream boundary - a local minimum
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Acoustic Coupling - Describing Function

» A Describing Function
K(w, A) is defined to
describe the saturation of

the FTF
Hnoniinear (W )
K(w, A) = —noniinearl®?) —
( ) Hinear(w) o~ i
Frequency Domain » The CLTF is then given by ;5/2 'l: “'\ ,”\‘\ .
K(w, AHw) 2 AR
CLTF = ; LA
1+ K(w,AHW)Gae  ° ‘ e
» Ais increased until gjg\ I
unstable mode at ~ 350Hz =, MR
is stabilised 0 Ny
» This gives a LCA of 19%, ° Breaency (s o

compared with the
experimental result of 21%
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Acoustic Coupling - Time Domain

» More realistic flame
saturation, mode
interaction

» Acoustics assumed to
remain linear, Gac(w)
output from LOTAN

ug(t) _ Q'(r)
ug _/Gac(t_T) Q dr (Loading movie)

Time Domain

> Z:i now a convolution of
acoustic Green function
and historic Q' values

» Model started with
low-level broadband noise,
and allowed to develop




movie.mpg
Media File (video/mpeg)


Acoustic Coupling - Time Domain

Time Domain Power Spectra
025 2
. —_—
02t a
n
]
L]
015 i
0.1
0.05
A
o]

0 200 400 600 800 1000
frequency (Hz)

Time Domain

Frequency 348Hz 359Hz
Limit Cycle | 25% 21%
Amplitude




Conclusions

» Thermo-acoustic Instabilities are a problem affecting many
real-world systems, leading to large-scale damage and
costs

» Low-order flame model for a realistic geometry can
capture the essential behaviour of partially-premixed
flames

» Coupling with an acoustic model can be achieved in time
and frequency domain

» Used this coupling, this approach can provide valuable
Gonalusions predictions of the occurrence, frequency, and amplitude of
instabilities
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Future Work

» Flame model being extended to incorporate effects of
vorticity, flame stretch, etc.

» Technique can also be applied to more realistic modes
found in gas turbines
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