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Introduction: the cylinder wake

• the onset of the von Karman vortex street occurs at a Reynolds number 
of about 49 (Williamson,  Annu. Rev. Fluid Mech. 1996)

Roussopoulos, JFM 1993
Re=120

• the vortices lead to increased drag; increased fluctuations in lift; structural 
vibration; and noise

• we focus our attention on the two-dimensional wake using direct 
numerical simulations



Introduction: control
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Previous closed-loop studies

x/D = 2.75

Re=60 Re=60

f(θ, t) = g(θ)Γ(t)

Γ(t) = kus(t)

Park et al.,  Phys. Fluids 1994:

• perform DNS and use a proportional feedback gain:
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Previous closed-loop studies

x/D = 2.75

f(θ, t) = g(θ)Γ(t)

Γ(t) = kus(t)
• used a proportional feedback gain in DNS:

Re=80 • Roussopoulos (JFM 1993) found similar results in 
his experimental study

• he also used a proportional feedback gain

• and also observed a ‘gain window’, which shrinks 
with Reynolds number

• clearly there are limitations to using a proportional 
feedback gain

Park et al.,  Phys. Fluids 1994:
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Current study

• these previous studies used simple feedback laws that were found using a 
combination of physical intuition and trial-and-error

• in the present work we propose a model-based control approach

• there are many different ways to design a model-based feedback 
controller

• the important feature of them all - distinguishing them from a 
proportional feedback gain - is that they are dynamic - just like the 
cylinder wake itself

• controller designed using       loop-shaping methodsH∞
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• state-space model found using the Eigensystem Realization Algorithm

• finding the linear dynamics of an unstable system is difficult - the growing 
amplitudes will give rise to non-linear, limit-cycling behaviour

• therefore we first find a reduced order model for a nearby, stable Reynolds 
number of Re=45

Finding a reduced-order model

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

u(t) y(t) u(t) is the input
y(t) is the output
x(t) is the state, x(t) ∈ Rn

x = [x1 x2 . . . xn]
T , n ! 10



Reduced order model: Re=45

• here we validate the reduced-order model

• by comparing its impulse response to that found directly in DNS
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• a controller is first designed for Re=45

• but since the wake is stable, what does the controller actually do in this 
case?
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Closed-loop impulse response

• how does the model-based controller compare to a proportional feedback 
gain like that used by Park et al.?

• oscillations die away much more quickly - even when using the controller 
designed at Re=45
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Frequency response

• with the Re=60 wake now stabilized, we can find a linear model for it

• the frequency response (or ‘transfer function’) is a very concise way of 
validating this model

• it is also very useful for controller design
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Control at higher Reynolds numbers

• by Re=100, control with a single sensor becomes more difficult

• this is caused by a larger region of absolute instability
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Control at higher Reynolds numbers

• so what if we put the sensor further downstream?

P100

K100



Two conflicting requirements

• for the sensor location, we want two things:

1. reasonably ‘new’ information

• i.e. a small time delay

• means putting the sensor near the cylinder surface

2. information from the unstable part of the wake

• means putting the sensor further downstream as Re increases

• these two requirements are conflicting - improving 1. makes 2. worse, and 
vice-versa



Control at higher Re

1 2 3 4 5 6 7 8
60

70

80

90

100

110

120

x/D

R
e

U∞

absolutely unstable region 
(from Pier, JFM 2002)

τ/TSt = 1/3

• these two locations grow further apart as the Reynolds number increases

• and so meeting both requirements with a single sensor is increasingly difficult



U∞

Two sensor case

• so can we improve the performance by using two sensors?

case 3

case 2case 1
x/D = 2.75 x/D = 3.75

x/D = 1.75, 4.75



Two sensor case

• comparison: single sensor vs two sensors
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Explaining previous results

Park et al.,  Phys. Fluids 1994:

Re=60
gain window
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Conclusions

• a model-based controller performs much better than a trial-and-error based 
proportional feedback gain

• at higher Reynolds numbers, control with a single sensor becomes more and 
more difficult. This is caused by two conflicting requirements for the sensor 
location:

1. near the cylinder to ensure a small time delay

2. far enough downstream to have enough information about the unstable 
part of the wake
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