

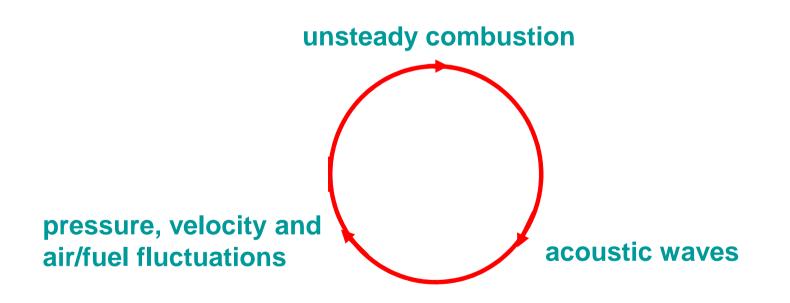
Forced flame dynamics and self-excited instabilities of laminar premixed flames

Karthik Kashinath

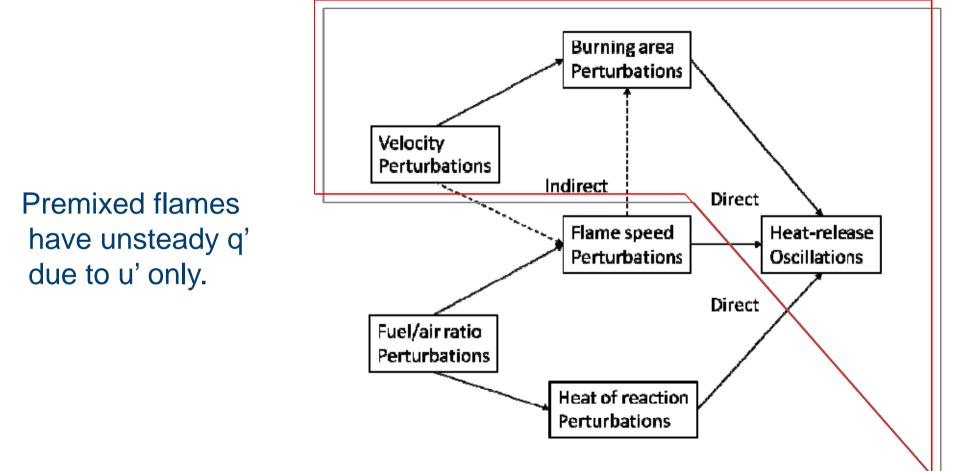
21 July 2011

Thermoacoustic instabilities

Self-excited oscillations due to the coupling shown below



Unsteady heat release: mechanisms

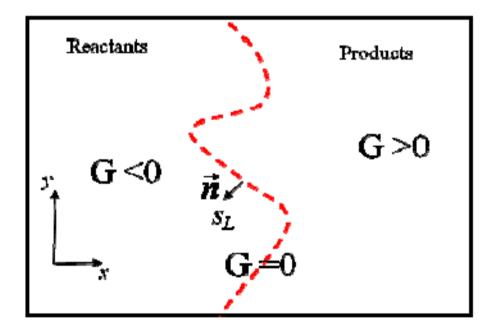


S. Hemchandra, ECCOMAS CFD 2010

Premixed flame model: level set approach

The flame is modelled as a thin moving boundary between reactants and products

Flame represented as a level set of a function G(x,y,t).

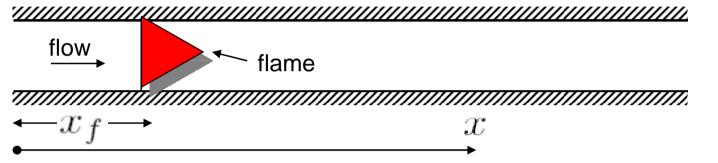


$$\frac{\partial G}{\partial t} + \vec{u}_{flame} \cdot \nabla G = 0$$

$$\frac{\partial G}{\partial t} + \left(\vec{u} \left(\vec{x}, t \right) - s_L \frac{\nabla G}{\left| \nabla G \right|} \right) \cdot \nabla G = 0$$

Linear acoustics

Diagram of premixed flame in a tube



Non-dimensional governing equations

$$\begin{split} F_{1} &\equiv \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} = 0, \\ F_{2} &\equiv \frac{\partial p}{\partial t} + \frac{\partial u}{\partial x} + \zeta p - \beta \delta_{D} (x - x_{f}) = 0 \end{split}$$

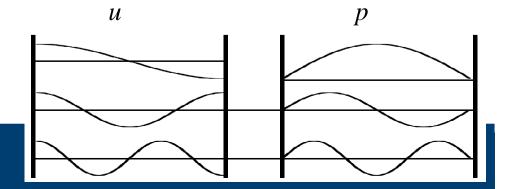
where

$$\beta = \frac{(\gamma - 1)\tilde{\dot{Q}}_{\tilde{x}f}}{\gamma M p_0 c_0}$$

Discretization into basis functions

$$u(x,t) = \sum_{j=1}^{N} \eta_j(t) \cos(j\pi x),$$
$$p(x,t) = -\sum_{j=1}^{N} (\frac{\dot{\eta}_j(t)}{j\pi}) \sin(j\pi x)$$

j=1



Flow field: Simplified model of convective disturbances

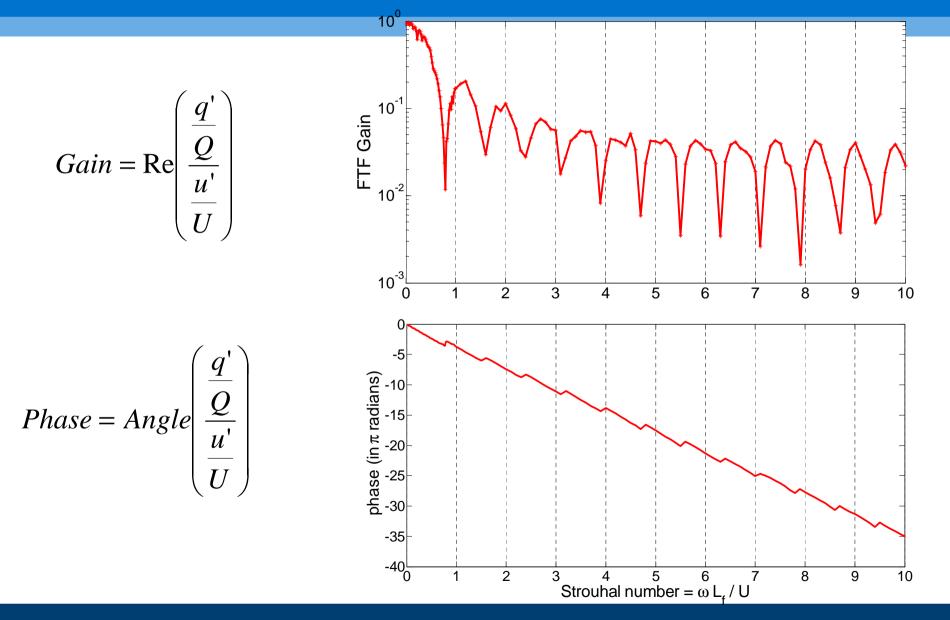
Acoustic velocity disturbances at the burner lip are convected downstream at a characteristic velocity (Uc).

$$\mathcal{E} = \frac{u'}{u_0}$$
$$u(x,t) = 1 + \mathcal{E}\cos(kx - \omega t)$$
$$k = \frac{\omega}{u_c} = \frac{\omega}{u_0} \frac{u_0}{u_c} = K\left(\frac{\omega}{u_0}\right)$$

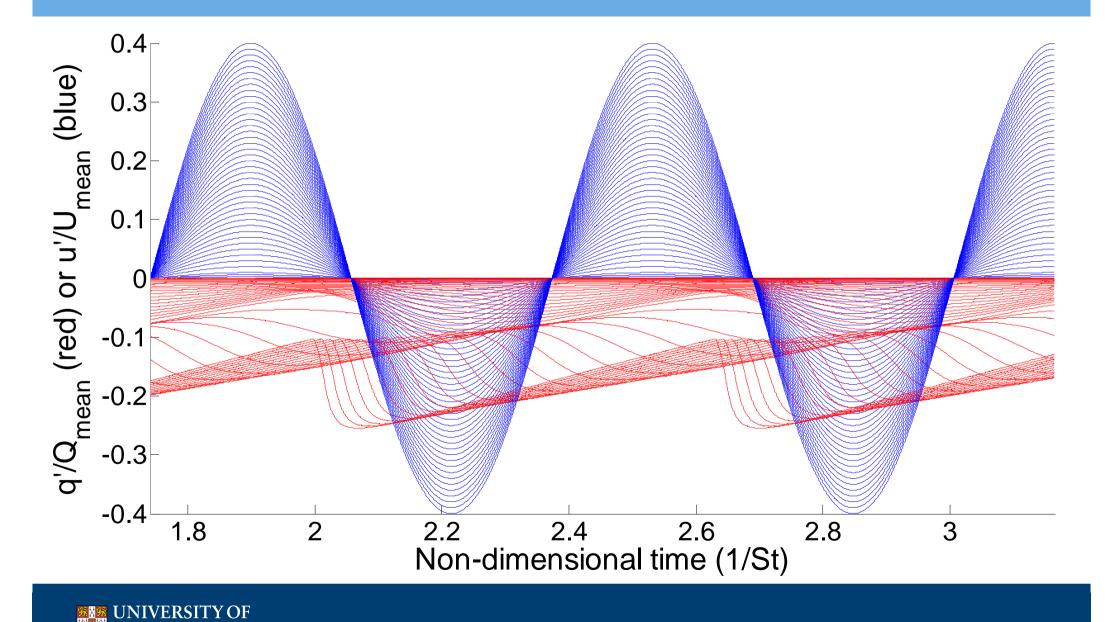
K is a parameter that can be varied in the model

S. Ducruix et. al., Proc. Comb. Inst. 2000

Linear response: Flame transfer function gain and phase



Nonlinear response of unsteady heat release at St = 1.6



Nonlinear stability criterion for periodic solutions

The stability of periodic solution can be examined as follows (M. P. Juniper)

$$u = r \cos(\omega t + \phi)$$

$$q = \sum_{j} a_{j} \cos(j\omega t + \phi_{j})$$

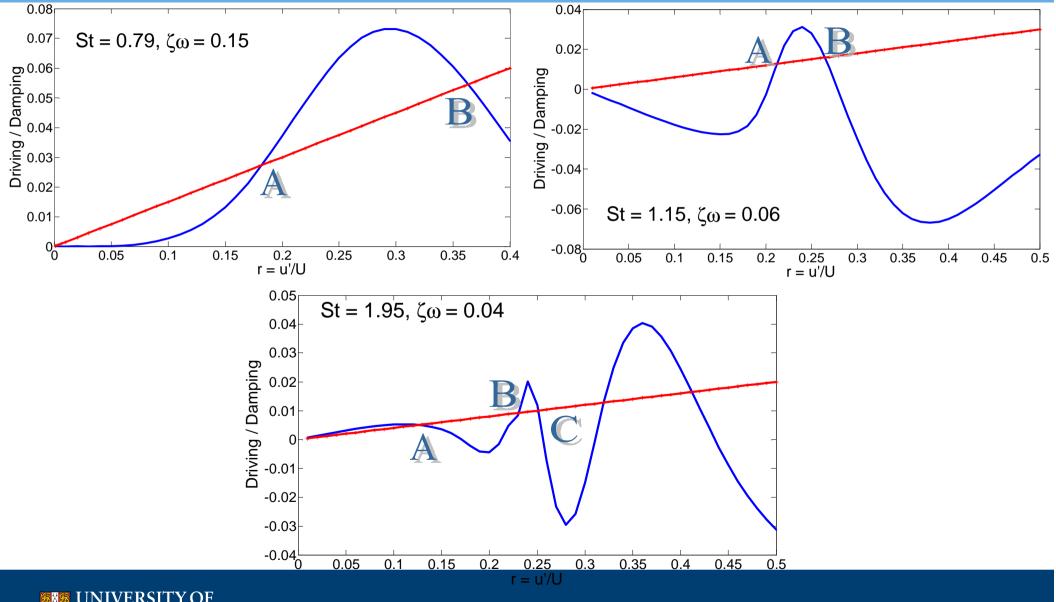
$$\oint \frac{dE}{dt} dt = \pi r(a_{1} \sin(\omega\tau) - r\zeta\omega)$$
The higher h
heat release

$$\tau = \frac{\phi - \phi_{1}}{\omega}$$
The higher h
heat release
affect the states
solution!

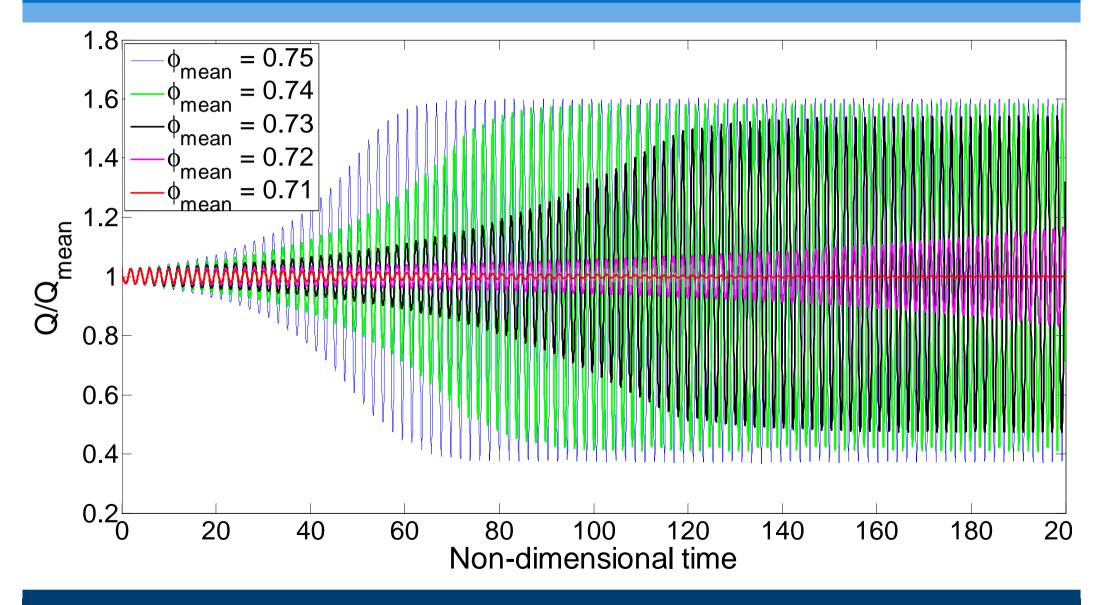
The higher harmonics in the heat release signal do not affect the stability of a periodic solution!

By definition, the integral of dE/dt goes to zero for a periodic solution. Whether these periodic solutions are stable or unstable can be identified by examining the change in sign of the above integral.

The premixed flame is susceptible to triggering Both subcritical and supercritical bifurcations are possible



Self-excited instabilities



Future work

- Use M.P.Juniper's flow instability tool to predict the wave-speeds of convected disturbances, which is an input to the flame model
- Map out the bifurcation diagram as a function of various parameters (length of tube, flame position, damping factor and flame parameters such as mean equivalence ratio)
- Extend the above analyses to more realistic flame geometries and to stratified flames

