Local stability analysis of swirling shear flows

Dhiren Mistry

Supervisor Dr Matthew Juniper

Background

- Gas turbines: compromise between thermal efficiency and NO_x emissions
- Global analysis important for fuel injector design
 - Expensive (time and cost)
- Local analysis can provide insight quickly and with less demanding computer requirements

Local stability analysis

 Perform spatio-temporal analysis (convectively unstable or absolutely unstable)

- Estimate global linear frequency and growth rate
- Force flow to calculate global mode

Swirling wake

Local analysis performs well for slowly evolving flows

Swirling wake

Local analysis performs well for slowly evolving flows

Swirling wake

Local analysis performs well for slowly evolving flows

Swirling vortex

Local analysis cannot identify wavemaker region

Swirling vortex

Local analysis cannot identify wavemaker region

Non-parallelism effects

- Local analysis makes locally parallel approx.
- Not valid for strongly non-parallel flows

- Strongly non-parallel in recirculation bubble
- Local analysis accurate in *locally parallel* wake region

parallelism

Summary

- Local analysis can examine flows much faster than global analyses
- Gives very good results for slowly evolving flows

 Still provides useful information (absolute instability & frequency)

 Useful as a diagnostic tool to better understand global flow behaviour from global analysis Acknowledgements:
Ubaid Ali Qadri
Matthew Juniper

Questions?